اعداد زیرتقسیم احاطه ای در گرافها

thesis
abstract

مجموعهs از رئوس گراف gرا یک مجوعه احاطه گر تام نامند هرگاه هر رأس درv(g) با حداقل یک رأس از s مجاور باشد. مینیمم تعداد اعضای یک مجموعه احاطه گر تام را عدد احاطه ای نامیده و با?_(t ) (g) نشان می دهند. مجموعه s را یک مجموعه احاطه گر همبند مضاعف در g نامند هرگاه هر رأس درv(g)-s با حداقل یک رأس از s مجاور بوده و زیرگرافهای القایی g[s] و g[v-s] همبند باشند. مینیمم اندازه یک مجموعه احاطه گر همبند مضاعف در g را عدد احاطه ای همبند مضاعف آن نامیده و با ?_cc (g) نشان می دهند. مینیمم تعداد یالهایی از گراف g را که با زیرتقسیم ـآنها عدد احاطه ای تام (عدد احاطه ای همبند مضاعف) افزایش یابد، عدد زیرتقسیم احاطه ای تام (عدد زیرتقسیم احاطه ای همبند مضاعف) نامیده و ب) sd_(?_t ) (g) sd_(?_cc ) (g) (نشان می دهند. فاوارون و همکارانش حدس زدند که در هر گراف همبند g از مرتبه n?3، sd_(?_(t ) ) (g)??_t (g)+1 و آن را برای برخی گرافها ثابت کردند. در این رساله، این حدس را برای گرافهایی که هر رأس آنها مشمول در حداکثر سه دور القایی c_4 باشد و گرافهای همبندی که دورهای القایی c_3 و c_5 ندارند، ثابت کرده و یک کران بالا برای عدد زیرتقسیم احاطه ای تام در رده خاصی از گرافها بر حسب عدد جورسازی ارایه می دهیم. همچنین عدد زیرتقسیم احاطه ای همبند مضاعف را مطالعه کرده و کرانهایی را برای آن برحسب پارامترهای مختلف یک گراف ارایه می دهیم.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

اعداد احاطه ای فراگیر تام در گرافها

فرض کنید گرافی با مجموعه رأس های و مجموعه یال های باشد. زیر مجموعه مجموعه احاطه گر است، هرگاه هر رأس در مجاور با حداقل یک رأس در باشد. عدد احاطه ای ? ? مینیمم کاردینال مجموعه های احاطه گر در است. مجموعه احاطه گر همبند از گراف را مجموعه احاطه گر فراگیر همبند - مجموعه در نامند هرگاه مجموعه احاطه گر همبند در نیز باشد. عدد احاطه ای فراگیر همبند? ? مینیمم کاردینال مجموعه های احاطه گر فراگیر همبند در...

15 صفحه اول

نکاتی در خصوص پایداری احاطه گر رومن علامتدارتام در گرافها

چکیده :فرض کنیم ‌ یک گراف ساده و متناهی با مجموعه رئوس است. یک تابع احاطه گر رومن علامتدار تام روی گراف یک تابع مانند است بطوریکه: الف) برای هر ، ب) هر رأس با ویژگی مجاور با حداقل یک رأس با است. وزن یک برای تابع برابر تعریف می شود. عدد احاطه گر رومن علامتدار تام برای را که با نمایش می دهیم برابر می نیمم وزن تمام ها روی است. عدد پایداری احاطه گر رومن علامتدار تام در گراف که با نمایش داده می شود ...

full text

بررسی عدد احاطه ای رومی در گرافها

مجموعه های احاطه ‏‏گر موضوعی کاربردی و گسترده در نظریه ی گراف می باشد که به صورت های گوناگونی تعمیم یافته و مورد مطالعه قرار گرفته است. زیرمجموعه ی ‎$s$‎ از ‎$‎v(‎g)$‎ را یک مجموعه‎‏ ی احاطه ‏گر گویند هرگاه ‎$n[s]=v(g)$‎. کمترین اندازه ممکن برای یک مجموعه ی احاطه گر را عدد احاطه ای گویند و با ‎$gamma(g)$‎ ‎‏نمایش می دهند. تابع ‎$f:v(g) ightarrow {0,1‎, ‎2}$‎ را یک تابع احاطه گر رومی روی...

15 صفحه اول

عدد احاطه ای مهار شده در گرافها

فرض کنید g = (v;e) گرافی با مجموعه رئوس v و مجموعه یالهای e باشد. مجموعه d از از رئوس گراف g یک مجموعه احاطه گر است هرگاه هر عضو v-d با راسی از d مجاور باشد. مجموعه d از رئوس گراف g یک مجموعه احاطه گر مهار شده است هرگاه هر راسی که در d نیست با راسی از d و راسی از v-d مجاور باشد. عدد احاطه ای مهار شده g یعنیr(g) مینیمم اندازه یک مجموعه احاطه گر مهار شده در g است. در این پایان نامه کرانهایی برایr...

15 صفحه اول

احاطه کننده رنگی در گرافها

ما ارتباط بین مسئل? افراز خوش? سالم و مسئل? احاطه کننده رنگی را مطالعه می کنیم.

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

دانشگاه تربیت معلم - تبریز - دانشکده علوم پایه

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023